Измеритель толщины лакокрасочного покрытия своими руками. Проверка лакокрасочного покрытия толщиномером

В процессе поиска, подходящего для меня автомобиля с пробегом, столкнулся с необходимостью проверки лакорасочного покрытия (ЛКП) на однородность, для выявления крашеных или шпаклеваных деталей. Сначала в руки мне попал профессиональный измеритель толщины ЛКП, но давали мне его ненадолго, а процесс поиска машины, наоборот, растянут по времени. Измеритель пришлось вернуть владельцу, а подходящая машина найдена не была.
А нельзя ли сделать простейший измеритель толщины краски самому?
Первым результатом поиска по интернету, стала классическая схема, на основе двухобмоточного трансформатора с открытой магнитной системой.

На первичную обмотку подается некий сигнал, а со вторичной обмотки подается сигнал на измеритель. Измеряемый образец, замыкает магнитную систему и чем толще краска, тем меньше связь между обмотками, тем меньше выходной сигнал. Но искать подходящее железо для трансформатора и мотать его было лень, продолжил поиски. Кроме этого подобные схемы имеют сильную нелинейность зависимости уровня сигнала от толщины покрытия.
Затем попалась схема, которя работает на основе изменения индуктивного сопротивления датчика. На измерительную катушку подается калиброваный сигнал (лучше синусоидальный) , катушка включена в плечо измерительного моста, после установки нуля, проводится измерение.



А нельзя ли еще проще? Ход мыслей примерно такой: "если датчик - это индуктивность, значит нужно устройство измерения индуктивности"

Еще я вспомнил, что у меня валяется несколько плат Arduino. Брал пару лет назад поиграться.
Сформулировал, для себя, задачу - "Измерение индуктивности на Arduino минимумом навесных деталей".
В результате поисков, наткнулся на страницу https://github.com/sae/Arduino-LCQmeter/blob/master/LC-gen.ino
эта программа и стала прототипом простейшего измерителя ЛКП.
В качестве основной платы, выбрана Arduino nano за небольшие габариты.
Суть работы в следующем: на измеряемый LC-контур подается импульс "накачки", после чего запускается счетчик до до тех пор, пока сигнал на контуре, не пройдет через "0" компаратора, после чего процесс повторяется.
В результате, показания счетчика пропорциональны резонансной частоте LC контура.
Сначала опробовал идею на столе, с выводом информации на компьютер. Вроде работает
Хотя у меня был LCD модуль, но с ним устройство получалось громоздким и требовало изготовления корпуса.
Решил сделать индикацию толщины на светодиодах.
Нарисовал схему, спаял шилд на макетке, предусмотрел контроль напряжения батареи.


Проблемой оказалось изготовление катушки. Если чашек ферритовых броневых сердечников нашел много и разных, то каркасов катушек не нашел ни одного. После нескольких попыток сделать каркас самостоятельно, было найдено следующее решение: на коническом корпусе шариковой ручки были установлены две картонные щечки, намотано приблизительно подходящеее количество витков, чтоб поместилось внутрь сердечника. Провод взял минимальной толщины, какой был под рукой (около 0.08) количества витков не помню, что-то около 100. после намотки, одну щечку снял. и подталкивая за другую щечку поместил получившуюся катушку внутрь сердечника. Выпавшие витки, заправил в катушку пинцетом. После этого капнул на витки суперклеем и закрыл катушку оставшейтся щечкой. Катушку на плате закрепил термоклеем.
Конденсатор желательно металлопленочный, только не керамический, поскольку у керамики такой емкости недопустимый ТКЕ
В результате, получилась такая конструкция:




Текст программы для загрузки:

Работа с устройством:
Поскольку разные машины имеют разную тощину ЛКП, сначала делается процедура калибровки. Кроме этого процедура калибровки, позволяет снизить влияние температуры на результаты измерения. Для калибровки, нужно прижать устройство к покрытию автомобиля, и нажать кнопку "калибровка"
После проведения калибровки, значение толщины ЛКП, выраженное в "условных единицах" записывается в eeprom.
для проведения измерения, прибор прикладывается к разным местам ЛКП автомобиля и нажимается кнопка "Измерение". Если отклонение измеренного результата от записанного, невелико, загорается зеленый светодиод.
Если отклонение превышает некоторую границу - загорается белый светодиод - "подозрительно"
Если есть второй слой краски, или была полировка - загорается один из синих "краска" или "полировка"
Если покрытие близко к нулю или превышает 0.2, то загораются красные светодиоды "шпаклевка" или "металл"
Каждое измерение толщины производится 3 раза, а потом значение усредняется. Возможно, одного раза достаточно. Это позволит получать результат практически мгновенно.

Не стоит рассматривать эту поделку, как образец готового изделия. Это всего лишь пример того, как можно решить поставленную задачу "подручными" средствами. Но, подозреваю, что на основе этого измерителя, можно изготовить измеритель с профессиональной точностью. Для этого нужно будет, качественно намотать катушку, подобрать конденсатор, с минимальным TKE, подключить экранный модуль, подобрать формулу пересчета "сырого" значения в микрометры.

Борис Падорин, ООО "Долина-Сервис"

К сожалению, очень часто при продаже своих автомобилей автовладельцы прибегают к различным хитростям, чтобы скрыть видимые недостатки. Так, например, недобросовестный автовладелец может наложить на кузов своего автомобиля толстый слой шпаклевки, который скроет царапины и небольшие вмятины.
По истечении какого-то времени шпаклевка отвалится, а новоиспеченный владелец транспортного средства «влетит в копеечку». Измеритель толщины лакокрасочных покрытий поможет определить – соответствует ли толщина покрытия конкретного автомобиля нормам. А значит, избежать неприятных последствий в будущем.

Данный прибор весьма пригодится, когда нужно будет измерить толщину лакокрасочного покрытия. Необходимость в этом измерении возникает, когда исследуется состояние кузова автомобиля. Как пользоваться измерителем? Все довольно просто. Измеритель нужно приложить к конкретной поверхности и нажать кнопку. В процессе измерения нужно слегка поворачивать и покачивать прибор, чтобы стрелка максимально сильно отклонилась. После того как стрелка отклонится, можно считывать значение толщины.

Норма толщины лакокрасочного покрытия:

– обычная краска – 0, 15…0,3 мм;

– краска «металлик» – 0,25…0,35мм.

Если толщина покрытия на кузове автомобиля не превышает допустимых норм, значит можно быть уверенным, что дефекты кузова не спрятаны под слоем шпаклевки.

Данное устройство сделано по простой схеме. Несмотря на это измеритель выдает достаточную точность при измерении. Также он является «мобильным» и компактным, что является огромным плюсом. Ведь измеритель можно будет без труда взять с собой на авторынок. На следующем рисунке показана схема измерителя.

При создании устройства в основу была положена схема Ю. Пушкарева. В его схеме имелись некоторые недочеты, поэтому устройство работало не совсем правильно. После небольших изменений в схеме Пушкарева и появилась данная схема.

(если на схеме Вам ничего не понятно, можете пройти экспресс курс “ “)

Измеритель толщины лакокрасочного покрытия работает от батареи «Крона», потребляемость тока составляет не более 35 мА. Даже если напряжение батареи снизится до 7В, устройство сохранит свою работоспособность. Температурный интервал при работе составляет от десяти до тридцати градусов по Цельсию (плюс). Сам прибор находится внутри пластмассовой коробки, размеры – 120*40*30 мм.

На таймере DD1 собран задающий генератор (рисунок 1). Он вырабатывает специальный импульсы (прямоугольные), скважность которых равна двум, а частота – 300 Гц. Прямоугольные импульсы преобразуются в синусоиду благодаря интегрирующей цепочке R3C2. За счет этого повышается точность измерения. С помощью подстроечного резистора R5 (регулятора уровня сигнала) нужно установить оптимальный режим для трансформатора Т1, который является измерительным. На выходе УЗЧ DA1 сигнальная амплитуда будет составлять 0,5 В.

В измерительном трансформаторе находятся Ш-образные пластины, которые расположены встык. Однако замыкающих пластин там нет. Металлическая основа выступает как магнитный замыкатель. На эту основу нанесено лакокрасочное покрытие, которое исследуется. Размер немагнитного зазора в цепи магнитопровода будет напрямую зависеть от толщины покрытия. То есть, чем толще покрытие, тем больше будет размер зазора. Чем больше зазор, тем меньше напряжение на трансформаторе (вторичная обмотка). Чем больше зазор, тем меньше связь между обмотками. Разделительными конденсаторами являются С5 и С7. В качестве фильтра, устраняющего ВЧ составляющие сигнала, используется цепь R6C4.

Ток во вторичной обмотке трансформатора, который выпрямлен диодом VD1, можно узнать с помощью микроамперметра РА1. Когда происходят изменения в батарее питания GB1, в степени ее разряженности, соответственно происходят изменения в коэффициенте усиления УЗЧ DA1. Благодаря стабилизатору напряжения DA2 в коэффициенте усиления сохраняется стабильность. Узнать напряжение батареи можно при помощи кнопочного переключателя SB2 и резистора R8. Измерения проводятся только при нажатии кнопки SB1.

Для того чтобы создать порог, который запрет диод VD1, нужно использовать специальный транзисторный каскад, а именно – VT1R9R10R11. С его помощью будет подаваться начальное смещение. Благодаря этому каскаду стрелка амперметра не будет отклоняться. Исключением будет лишь тот случай, когда в поле трансформатора будет присутствовать магнитный замыкатель. Благодаря всему этому на измерителе можно будет установить максимально-возможную толщину, а точность измерения будет максимально-точной. Существуют определенные границы, в которых можно измерять толщину. При соблюдении всех характеристик в данном измерителе пределы будут от 0 до 2,5 мм. Погрешность в измерениях составит 0,5 мм, в том случае если толщина покрытия от 0 до 1 мм. Если толщина покрытия от 1 до 2,5 мм, тогда погрешность составит 0,25 мм. Резистор R10 можно увеличить до числа 3,9 кОм. Это нужно для того чтобы увеличилась точность измерения, ведь пределы измерения уменьшатся от 0 до 0,8 мм. Благодаря этому шкала «растянется», а порог, который отпирает диод VD1, поднимется.

Все детали расположены на печатной плате, это показано на рисунке ниже. Одна сторона платы выполнена из фольгированного стеклотекстолита, его толщина – 1 мм. Изначально транзисторного каскада VT1R9R10R11 не было совсем. Позже, в ходе небольших изменений, он появился. Каскад собран как навес, так как на плате не предусматривается для него места.

В приборе имеются как постоянные резисторы, так и подстроечные. Постоянные – МЛТ-0,125, а подстроечные – СПЗ-276. К конденсаторам С4, С2 и С1 относятся КМ-6 (или К10-23, К10-17). К конденсаторам С6, С5 и С3 относятся К50-35. В качестве амперметра используется указатель уровня записи (деталь взята с магнитофона марки «Электроника-321»). Показатели микроамперметра:

– ток отклонения (отклонение полное) – 160 мкА;

– сопротивление (рамки) – 530 Ом.

Для того чтобы намотать трансформатор Т1 на магнитопровод Ш5Х6, нужно использовать трансформатор от карманного приемника. Можно взять как выходной, так и согласующий трансформатор. В первичной обмотке будет двести витков, во вторичной – четыреста пятьдесят витков. Используемый для обмоток провод – ПЭЛ 0,15. Также потребуются пластины (Ш-образные). Пластины промазываются эпоксидным клеем, затем (после высыхания клея) торцы пакета обрабатываются с помощью бархатного напильника. Трансформатор вклеивается внутрь прибора, в прямоугольное отверстие коробки. При этом торцы магнитопровода (рабочие) должны выступать на 1…3 мм. за пределы коробки.

Использование деталей и их замена:

  1. Таймер КР1006ВИ1 – вместо него можно использовать LM555.
  2. Стабилизатор КР1157ЕН502А – на замену можно взять КР142ЕН5А (L7805V) или 78L05. Лучше всего подойдет 78S05, так как он дает наименьшую мощность на выходе. Большая мощность и не нужна.
  3. Дифференциальный усилитель DA1 – в качестве этой детали используется KIA LM386-1 (микросхема).

Двигатель резистора R7 должен находиться в среднем положении, только после этого можно приступать к налаживанию устройства. Трансформатор (торцом магнитопровода) нужно приложить к стальному листу (чистой и плоской поверхности). Далее с помощью резистора R5 стрелка должна быть установлена на конечном делении в шкале амперметра РА1. Прибор должен быть обязательно откалиброван. Это проводится путем прокладывания бумажных листов между металлической поверхностью и трансформатором. Толщина листов должна составлять 0,1 мм (плотность – 80 г/м2). Бумага может использоваться самая обычная, А4. Перед началом калибровки корпус прибора нужно разобрать, а под его стрелку подложить миллиметровку. На миллиметровке будут отмечаться значения показаний в течение процесса калибровки. Затем с помощью графического редактора нужно нарисовать шкалу, распечатать ее на принтере (цветном) и аккуратно вклеить внутрь прибора. После этого прибор можно собирать.

Резистор R8 нужно подобрать правильно. При использовании новой батареи питания и нажатии на кнопки SB1 и SB2 должно быть следующее – стрелка на микроамперметре должна отклоняться до конечного деления на своей шкале. Обязательно нужно отметить на шкале деление при разряженной батарее. Его можно определить путем проведения измерений с подсоединенной батареей, разряженной до 7В. Также для определения деления при разряженной батарее можно использовать пальчиковую батарейку. Батарейку нужно подсоединить последовательно «Кроне», не забыв при этом изменить ее полярность. Далее нужно будет подсчитать разницу между значениями с батарейкой и без, а затем к этой разнице прибавить одну четверть. Это и будет нужное значение на шкале при разряженной батарее. Шкалу можно разделить на два цвета: нормальное состояние – зеленым цветом, разряженное состояние – красным цветом.

На заметку:

– если прибор используется при плохих погодных условиях и низкой температуре, то нужно хранить его в тепле, в кармане, и доставать непосредственно перед самим измерением.

– если используемый магнитопровод имеет сердечник Ш8Х8, необходимо будет снизить частоту генератора. Этого можно добиться путем увеличения номинала С1 до значения 47 нФ. Тогда работоспособность устройства будет на высшем уровне.

– в процессе калибровки можно использовать материалы только из чистого металла! Если будут использоваться материалы, которые содержат различные примеси, прибор может на них не среагировать.

12-вольтовой подогреватель тосола Регулятор оборотов двигателя постоянного тока 12 вольт

Здравствуйте. Сегодня я расскажу о толщиномере GY910. Зачем же он нужен? Он применяется для определения толщины покрытия магнитных и немагнитных металлов, определения толщины покраски металла в автомобиле-, авиа- и кораблестроении, определения толщины покрытия металлических конструкций в быту (например, окон, дверей), измерения толщины лака на медных дорожках при производстве печатных плат, быстрой детекции металлических деталей на входном контроле, поиска дефектов металла без повреждения краски при покупке подержанного автомобиля, измерение оксидной плёнки металла. Если вам это интересно – добро пожаловать под кат.

Товар был доставлен курьерской службой за 20 дней. Толщиномер поставляется в картонной коробочке:

В комплект входит инструкция, в том числе и на нормальном русском языке:

Железная и алюминиевая пластины, а также набор калибровочных пластин различной толщины:

И, прежде чем я перейду к самому толщиномеру – его краткие технические характеристики:

Особенности толщиномера GY910:
Компактный и легкий - всегда можно возить с собой;
Автоматическое отключение для экономии энергии;
Переключение между единицами измерений;
Автоматическое распознавание типа металла.
Технические характеристики:
Принцип измерений: электромагнитная индукция и вихревые токи Фуко;
Диапазон измерений: от 0 до 1300 микрон;
Шаг измерений: 1 микрон;
Точность измерений: ±(3%+2 мкм) / ±(3%+0.078 mil);
Предел измерения: 0-999 мкм (1 мкм) / 1000-1300 мкм (0.01 мм);
Калибровка: обнуление, многоступенчатая ручная калибровка;
Единицы измерения: мкм, мм, mil;
Минимальный вогнутый радиус кривизны: 25 мм;
Максимальный выпуклый радиус кривизны: 1,5 мм;
Радиус зоны измерения: 3 мм;
Минимальная толщина подложки: Fe (0,5 мм) / NFe (0,3 мм);
Источник питания: 2 батарейки 1.5V AAA;
Условия окружающей среды: от 0°C до 40°C при 20-70% относительной влажности;
Условия хранения: от -20 до 70°C;
Габаритные размеры: 117х30х22,5 мм;
Вес: 65 гр.
Комплектация толщиномера GY910:
Толщиномер ЛКП GY910;
Руководство пользователя на Русском языке;
Набор калибровочных пластин от 50 до 1000 мкм;
Железная калибровочная пластина (Fe);
Алюминиевая калибровочная пластина (NFe);
Шнурок на руку;
Упаковка;


На лицевой стороне толщиномера расположен ЖК-экран, кнопка калибровки и кнопка Включение/Выключение/ОК. Процедура многоступенчатой калибровки подробно расписана в инструкции. Я же буду проверять толщиномер как есть, с заводской калибровкой.

Сзади находится отсек для двух батареек ААА, батарейки в комплект не входят:

Когда батарейки сядут до неприемлемого уровня, индикатор батареек на экране будет мигать. Требуется заменить батарейки, так как это сильно повлияет на точность измерений. Этот момент особо обговорен в инструкции.

На верхнем торце толщиномера расположен электромагнитновихретоковый датчик, которым производится измерение толщины покрытия:

Для измерения толщины покрытий на магнитных материалах (Fe) используются как магнитная индукция, так и эффект Холла, позволяющий проводить измерения плотности магнитного поля. Для создания магнитного поля чаще всего используется мягкий ферромагнитный стержень с катушкой. Также, в свою очередь, для обнаружения каких-либо изменений в магнитном потоке применяется второй стержень с катушкой. Толщина покрытия определяется путём измерения плотности магнитного потока. Допустимый процент погрешности измерений для приборов данного типа равен ± 3%.

Для измерения толщины покрытий на немагнитных материалах (NFe) используется вихретоковый принцип действия. На поверхности зонда прибора с помощью тока (с частотой от десятков КГц до единиц МГц), проходящего через катушку, на которую намотана тонкая проволока, генерируется переменное магнитное поле. При приближении зонда к токопроводящей поверхности, переменное магнитное поле генерирует на ней вихревые токи (токи Фуко). Вихревые токи создают собственные (противоположные первичному) электромагнитные поля, которые могут быть измерены основной или второстепенной обмоткой. Вихретоковый метод используется преимущественно для хорошо проводящих поверхностей, в частности сделанных из цветных металлов (например, алюминий). Величина напряжения на измерительной обмотке (измеряемая величина) зависит от расстояния от неё до электропроводящей поверхности, которая и является толщиной непроводящего покрытия.

Тип материала, Fe или NFe – определяется толщиномером автоматически.

Вскроем толщиномер:

В толщиномере используется прецизионный операционный усилитель от Texas Instruments и двоичный счетчик со сквозным переносом от NEXPERIA :

«Сердцем» толщиномера является микроконтроллер :

Вставляем в толщиномер батарейки:

Единицы измерений изменяются кратковременным нажатием на кнопку включения, доступны микроны, миллиметры (на фото) и миллидюймы:

Можно выключить толщиномер нажав и подержав кнопку включения, или если его не трогать, то через пять минут он отключится сам.

Проверим точность измерений прилагаемыми калибровочными пластинами.

Магнитный материал (Fe):

Немагнитный материал (NFe):

Перейдём к испытанию на автомобиле. Испытание провел на автомобиле знакомого. Машина практически новая, куплена Б/У, «небита-некрашена». Вернее сказать, бита, уже у моего знакомого, автоледи помяла ему пятую дверь. Видео, к сожалению, не будет. Знакомый запретил его выкладывать, после исследования машины, а ему ещё её продавать.))) Другие тоже на это не согласились. Поэтому только несколько чёрно-белых фото, чтобы не светить цвет машины. На всякий случай.

Измерения проводить очень просто, не нужно наклоняться к толщиномеру и пытаться увидеть показания, когда он прислонен к автомобилю. Плавно прикладываем датчик в интересующее место и через пару секунд резко отдёргиваем его не менее, чем на 5 сантиметров от корпуса авто. На экране останутся текущие показания.

Итак, я первый раз в жизни проверял автомобиль. Что бы выявить основные косяки, мне хватило пяти минут. Этого времени достаточно, чтобы проверить все основные элементы обойдя автомобиль по кругу. Конечно, если бы я потратил больше времени – можно было бы найти какие-то мелочи, но зачем это в данном случае? А случай – интересный.

Начал я с капота, с водительской стороны у лобового стекла. И сразу – удача (правда удача, смотря для кого):

Хороший такой слой шпаклёвки.

Остальной капот не шпаклевался:

Больше фото не будет, поскольку по фото можно будет определить марку автомобиля.)

Я продолжил обход автомобиля по часовой стрелке. На пятой двери я обнаружил шпаклёвку, оставшуюся от встречи с автоледи, владелец машины подтвердил, что всё точно. Обхожу машину далее и добраюсь до водительской двери. Дверь была практически полностью покрыта хорошим слоем шпаклёвки. Далее выяснилось, что левое переднее крыло меняли, наверно починить его стоило дороже. Это выяснилось по слою краски, который по толщине отличается от всех остальных окрашенных частей автомобиля. Наверное, удар пришёлся в водительскую дверь и крыло, заодно был повреждён капот. А также при осмотре стало понятно, что автомобиль перекрашивался, за исключением крыши. Только на крыше осталась родная краска. Это легко понять по толщине краски, а также по тому, что не заводская окраска неравномерна по толщине, в отличии от заводской окраски. Причём цвет подобран изумительно, да и рихтовал и шпаклевал явно специалист. Даже по отражению следов удара не видно. Ну а как же, «небита-некрашена»…))) Расстроил я владельца. Толщиномер при покупке помог бы в этом, сэкономив деньги.

Спасибо за внимание.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +13 Добавить в избранное Обзор понравился +6

Необходимость в толщиномере лакокрасочных покрытий (ЛКП) особо ощутима при покупке автомобиля с пробегом. Только им можно выявить достоверно места крашенных или шпаклеванных деталей. При этом неоднородность слоя краски является сигнализирующим фактором.

Можно взять во временное пользование профессиональный измеритель ЛКП, но его придется вскоре возвращать. А покупка подержанной машины может растянуться на несколько месяцев.

Измеритель толщины работает следующим образом:

  1. Проводится калибровка. Поскольку разные автомобили имеют различную толщину краски, то процедура калибровки в начале работы необходима. К тому же после калибровки температурные изменения меньше влияют на точность результатов. Выполняется просто, прикладывается датчик к чистой окрашенной поверхности и нажимается кнопка «калибровка». Данные о толщине покрытия, выраженные в условных единицах, записываются в EEPROM (програмно перезаписываемую память).

  1. Выполняется измерение, горит зеленый светодиод . Зеленый светодиод горит, когда отклонение измеренной толщины от записанной незначительно, «норма». Для выполнения измерения, прибор прикладывается к подозрительным и потенциально подверженным ударам и коррозии местам, нажимается кнопка «измерение».
  1. Загорается один из белых светодиодов - небольшое отклонение слоя краски от записанной величины, «подозрительно».
  1. Загорается один из синих светодиодов - затерты следы царапин или есть второй слой краски, «шлифовано» или «краска».
  1. Загорается один из красных светодиодов - толщина покрытия близка к нулю или превышает в 0.2 раза записанное значение, «металл» или «шпаклевка».

При нажатии на кнопку «измерение» замеры толщины проводятся 3 раза, а потом вычисляется среднее значение. Можно получать результат мгновенно, задав проведение измерения всего один раз.

Датчиком прибора является катушка индуктивности, устройством для вычисления величины индуктивности служит плата Arduino.

Толщиномер с индикацией на светодиодах получается компактным. Для установки LCD модуля понабилось бы изготовить громоздкий корпус.

Необходимые детали:

  1. Маленькая и удобная плата Arduino nano.
  2. Кусок паечной макетной платы.
  3. Две маленькие тактовые кнопки.
  4. Батарея питания «Крона».
  5. Два красных светодиода.
  6. Два синих светодиода.
  7. Два белых светодиода.
  8. Один зеленый светодиод.
  9. Резисторы 1 кОм - 10 штук.
  10. Выпрямительный диод IN4007 или другой малой мощности, небольшого размера.
  11. Конденсатор неполярный 100 нФ.
  12. Катушка индуктивности - 100 витков проволоки 0,1 мм. кв. на ферритовом сердечнике d=8 мм.

Сложности могут возникнуть при изготовлении катушки. Необходимо найти одну чашечку ферритового броневого сердечника. На конической части шариковой ручки разместить две картонные щечки на нужном расстоянии друг от друга, чтобы - так получится импровизированный каркас самодельной катушки. Берем обмоточный провод минимальной толщины, около 0.1 мм, чтобы необходимое количество витков из него поместилось внутри сердечника. Намотав около 100 витков на шариковую ручку, снимаем одну из щечек временного каркаса, и надавливая на другой картонный кружок, заталкиваем получившуюся катушку внутрь ферритовой чашки. Выпавшие витки заправляем на сердечник пинцетом. Капнув суперклеем на витки, фиксируем их, и закрываем катушку подходящим картонным кружком. Готовая катушка закрепляется на плате термоклеем.

От того, насколько качественно изготовлена катушка, будет зависеть точность измерителя толщины.

Конденсатор следует подобрать с минимальным ТКЕ (температурным коэффициентом емкости). Рекомендуется найти металлопленочный неполярный конденсатор, у керамических элементов ТКЕ достигает недопустимых значений.

После сборки всех деталей получается такая конструкция.

Здесь реализована идея сборки простейшего прибора с минимумом навесных деталей.

Принцип работы устройства в следующем:

  • Реализована схема, определяющая резонансную частоту LC-контура.

На измерительную катушку и конденсатор (LC-контур) подается калиброванный сигнал, аппроксимированно синусоидальный, после чего работает счетчик, пока сиглал в контуре не затухнет до уровня «0» - срабатывания компаратора Arduino nano.

  • Отсчитанное счетчиком время пропорционально резонансной частоте LC-контура.

Текст программы:

Вывод: предложенная схема дает возможность собрать профессиональное устройство высокой точности, для этого нужно качественно собрать катушку, выбрать неполярный конденсатор с минимальным ТКЕ, подключить экранный модуль LCD, вставить формулу перерасчета значений счетчика в микрометры.

Магнитный толщиномер покрытий считается более продвинутым способом узнать, насколько же надежным является слой краски на изделии. Почему он такой технологичный, но не так популярен, мы обсудим в этой статье.

Как работает толщиномер с магнитной хваткой?

Современные технологии приборостроения позволяют специалистам получить данные бесконтактными способами. Чтобы увидеть то, что скрыто внутри двигателя, механизма, организма человека, давно не нужно разбирать объект исследования. Медицина имеет на вооружении аппараты ультразвуковой диагностики и прочие достижения науки, а в технике применяются схожие по принципу действия приспособления, например, толщиномеры и прочие устройства, позволяющие с легкостью получить точные данные об исследуемом объекте. Чтобы, к примеру, исследовать двигатель автомобиля, нужен технический эндоскоп, а для внешнего обследования кузова – толщиномер.

Действуют они по принципу магнитной индукции, отмечая сопротивление магнитной цепи и воздействие на неё толщины покрытия. Снимаемые показания фиксируются прибором в порядке: основание – покрытие – датчик. Существуют другие виды толщиномеров (не магнитные), которые предназначены для получения данных о покрытии с основанием из цветных металлов. Они действуют по принципу вихревых токов, и о них будет рассказано ниже. Сейчас поговорим о магнитных типах этих приборов.

Где авторитетно показание толщиномера?

Магнитный толщиномер лакокрасочных покрытий чрезвычайно полезен в станкостроении, автомобилестроении, судостроении и самолетостроении. К примеру, во время производственного процесса требуется получить данные о толщине хромового покрытия на торцах плоских деталей, проконтролировать наличие брака или измерить толщину покрытия готовых колец компрессионных двигателей внутреннего сгорания.

Кроме того, магнитные толщиномеры применяются отделами технического контроля, лабораториями, специализированными мастерскими и просто в ремонтных работах. Его показаниям доверяют эксперты-оценщики страховых компаний и другие лица, заинтересованные в измерении толщины покрытия. В основу работы прибора положен принцип использования свойств постоянных магнитов. Магнитное основание, на которое нанесено покрытие (объект измерения), взаимодействует с магнитом, встроенным в прибор.

Сила этого взаимодействия и является базовым показателем измерения толщины поверхности: чем слабее сила, тем толще покрытие.

Как правильно работать с прибором?

Пользоваться толщиномером несложно: не требуются специальные технические навыки. Прибор подносят к объекту, прижимают щупом к поверхности, и датчик, который встроен в этот щуп, измеряет показания от конца датчика до основания. Через короткое время, после звукового сигнала, на экране появляется результат. Возможна постановка задачи для однократного измерения, возможна настройка периодического обновления показаний через равные промежутки времени. Таким образом, измеряется толщина покрытия. Некоторые модели (например, МТ-201К ) имеют в комплекте столик для снятия показаний.

В работе устройства существуют некоторые ограничения, упомянутые в его технических характеристиках. На том, что нежелательно, остановимся подробнее. Самым главным является то, что магнитный прибор не способен к работе с основаниями из других материалов, кроме ферромагнитных. Об этом было сказано вначале, когда шла речь о принципе работы прибора. Как определить пригодность металлического основания? Нужно поднести к нему магнит. Если притяжение ощутимо, значит основание годно к измерению магнитным толщиномером. Если притяжение заметно слабое, то придется использовать другой вид прибора. Основания из дерева, пластика, таких металлов, как медь и алюминий, не пригодны для работы с описываемым прибором. Также невозможна работа с сырым покрытием.

Какие ещё покрытия могут выдать погрешность в расчете данных? Это никель, краска с примесью железа (если окрашивание было произведено по ржавому металлу), покрытия, подверженные деформации. Поролон, пенопласт – тоже не желательны для исследований. Полученные данные будут точнее, если основание будет однородным, а не представляет собой прикрепленные друг к другу пластинки. Это связано с тем, что сочетание близко расположенных металлических пластин будет вызывать наложение их магнитных полей друг на друга.

Ещё одним противопоказанием к работе является слишком тонкое основание. Если его толщина меньше, чем 0,5 миллиметров, то точность измерения снижается (не очень значительно). Диаметр основания тоже имеет значение: если он меньше 10 миллиметров, это также нежелательно. Бывают случаи, когда данные на выходе должны быть уточнены согласно эталонным. Это случаи, когда основание слишком тонкое (0,3-0,5 мм), либо слишком толстое (свыше 5 мм), либо исследуются два и более основания, различных по диаметру. Процесс уточнения показаний прибора называется калибровкой. Для калибровки устройство комплектуется образцами стали и алюминия, которые служат объектами контроля, а также для сравнения полученных показаний.

Чем заменить магнитный толщиномер, если основание не магнитно?

Как было обещано, сейчас расскажем о других видах толщиномеров. Помимо магнитного, выпускаются механические, вихретоковые, электромагнитные и электромагнитно-вихретоковые. В ремонтных и строительных работах популярностью пользуется механический толщиномер. Предназначен он для того, чтобы проконтролировать слой краски, которым покрывают поверхность. Это обеспечивает, во-первых, равномерное нанесение покрытия, во-вторых, уменьшает расход материала.

Часто влажный лак или краска выглядят, как будто они нанесены равномерно. Однако после высыхания обнаруживаются неплотно закрашенные участки поверхности. Это устраняется путем закрашивания этих мест и последующего покрытия краской всего объекта, что приводит к двойному перерасходу. Механический толщиномер используют для снятия данных о влажном слое лакокрасочных материалов, которыми был покрыт объект. Щуп или гребенка имеет маркеры на зубцах. Его прижимают к поверхности на несколько секунд, затем осматривают. Относительно отпечатка материала на зубцах между маркерами делают вывод о толщине слоя.

Для оснований из цветных металлов используют вихретоковые толщиномеры. В основе лежит принцип вихревых токов, или токов Фуко. Через катушку проходит ток (частота свыше 1 МГц), который порождает переменное магнитное поле, что приводит в действие датчики на щупе. При прижатии прибора к токопроводящему материалу (поверхность объекта) происходит порождение на нем токов Фуко. Эти вихревые токи генерируют свои, противоположные электромагнитные поля, которые подвергаются измерению датчиками.

Подводя итоги, следует сказать, что в названии прибора заложена подсказка о принципе его работы: в магнитном толщиномере используется принцип взаимодействия магнита, встроенного в устройство, и магнитной поверхности объекта. Его применяют для измерения толщины покрытия на основании из черных металлов. В механическом толщиномере следует визуально осмотреть краску на зубцах щупа и сделать вывод о данных. С точки зрения точности показателей он является самым неточным. Вихретоковая модель помогает там, где невозможно использовать магнит – на непроводящей поверхности и цветных металлах.

Поделиться: