Линейная электрическая цепь описывается уравнениями. Линейные и нелинейные электрические цепи

Ветвь и узел электрической цепи

Электрическая цепь характеризуется совокупностью элементов, из которых она состоит, и способом их соединения. Соединение элементов электрической цепи наглядно отображается ее схемой. В зависимости от особенностей схемы следует применять тот или иной способ расчета электрической цепи. В данном разделе рассмотрим ключевые понятия, которые в дальнейшем будут необходимы для выбора наиболее оптимального и правильного приема решения задач.

Ветвью называется участок электрической цепи, обтекаемый одним и тем же током. Ветвь образуется одним или несколькими последовательно соединенными элементами цепи.

Узел - место соединения трех и более ветвей.

В качестве примера на рисунке изображены схемы двух электрических цепей. Первая из них содержит 6 ветвей и 4 узла. Вторая состоит из 5 ветвей и 3 узлов. В этой схеме обратите внимание на нижний узел. Очень часто допускают ошибку, считая что там 2 узла электрической цепи, мотивируя это наличием на схеме цепи в нижней части 2-х точек соединения проводников. Однако на практике следует считать две и более точки, соединенных между собой проводником, как один узел электрической цепи.

При обходе по соединенным в ветвях цепям можно получить замкнутый контур электрической цепи. Каждый контур представляет собой замкнутый путь, проходящий по нескольким ветвям, при этом каждый узел встречается в данном контуре не более одного раза. Ниже приведена электрическая схема, на которой отмечено несколько произвольно выбранных контуров.


Всего для данной цепи можно выделить 6 замкнутых контуров.

Закон Ома

Данный закон очень удобно применять для ветви электрической цепи. Позволяет определить ток ветви при известном напряжении между узлами, к которым данная ветвь подключена. Также позволяет буквально в одно действие рассчитать одноконтурную электрическую цепь.

При применении закона Ома предварительно следует выбрать направление тока в ветви. Выбор направления можно осуществить произвольно. Если при расчете будет получено отрицательное значение, то это значит, что реальное направление тока противоположно выбранному.


Для ветви, состоящей только из резисторов и подключенной к узлам электрической цепиa и b (см. рис.) закон Ома имеет вид:


Соотношение (1.15) написано в предположении, что выбрано направление тока в ветви от узла a к узлу b . Если мы выберем обратное направление, то числитель будет иметь вид: (U b -U a). Теперь становится понятно, что если в соотношении (1.15) возникнет ситуация, когда U b >U a то получим отрицательное значение тока ветви. Как уже упоминалось выше, это значит, что реальное направление тока противоположно выбранному. Примером практического применения данного частного случая закона Ома при расчетах электрических цепей является соотношение (1.18) для электрической цепи, изображенной на рисунке.



Для ветви содержащей резисторы и источники электрической энергии закон Ома принимает следующий вид:


Соотношение (1.16) написано в предположении, что предварительно выбрано напавление тока от узла a к узлу b . При расчете алгебраической суммы ЭДС ветви следует знак "+" присваивать тем ЭДС, чье направление совпадает с направлением выбранного тока ветви (направление ЭДС определяется направлением стрелки в обозначении источника электрической энергии). Если направления не совпадают, то ЭДС берется со знаком "-". На рисунке есть примеры применения данного варианта закона Ома - соотношения (1.17) и (1.19)

Линейные и нелинейные электрические цепи

Линейной электрической цепью называют такую цепь, все компоненты которой линейны. К линейным компонентам относятся зависимые и независимые идеализированные источники токов и напряжений, резисторы(подчиняющиеся закону Ома), и любые другие компоненты, описываемые линейными дифференциальными уравнениями, наиболее известны электрические конденсаторы и катушки индуктивности. Если цепь содержит отличные от перечисленных компоненты, то она называется нелинейной.

Изображение электрической цепи с помощью условных обозначений называют электрической схемой. Функция зависимости тока, протекающего по двухполюсному компоненту, от напряжения на этом компоненте называется вольт-амперной характеристикой (ВАХ). Часто ВАХ изображают графически в декартовых координатах. При этом по оси абсцисс на графике обычно откладывают напряжение, а по оси ординат - ток.

В частности, омические резисторы, ВАХ которых описывается линейной функцией и на графике ВАХ являются прямыми линиями, называют линейными.

Примерами линейных (как правило, в очень хорошем приближении) цепей являются цепи, содержащие толькорезисторы, конденсаторы и катушки индуктивности без ферромагнитных сердечников.

Некоторые нелинейные цепи можно приближенно описывать как линейные, если изменение приращений токов или напряжений на компоненте мало, при этом нелинейная ВАХ такого компонента заменяется линейной (касательной к ВАХ в рабочей точке). Этот подход называют «линеаризацией». При этом к цепи может быть применён мощный математический аппарат анализа линейных цепей. Примерами таких нелинейных цепей, анализируемых как линейные относятся практически любые электронные устройства, работающие в линейном режиме и содержащие нелинейные активные и пассивные компоненты (усилители, генераторы и др.).

электрическая цепь – это отдельно взятая группа электроприборов (утюги, блоки телевизоры, холодильники и т. д.) совместно с розетками, выключателями, проводами, автоматами и электрической подстанцией (как же без нее получить ток) на данный момент работающих совместно для достижения определенной цели. Ну а вот в зависимости от цели (просмотра любимой передачи, сохранения свежести продуктов или обеспечения стабильности питающих параметров в блоке питания компьютера) электрические цепи подразделяются на простые и сложные, неразветвленные и разветвленные, линейные и нелинейные.

То есть электрическую цепь можно рассматривать как совокупность отдельных электрических устройств, так и совокупность дискретных простейших деталей и связей между ними образующих один из функциональных блоков в электрической схеме какого-то устройства.

Неразветвленные электрические цепи – они же простые – это цепи в которых ток течет не меняя свое значение и по простейшему пути от источника энергии до потребителя. То есть через все элементы этой цепи течет один и тот же ток. Простейшей неразветвленной цепью можно считать цепь освещения одной из комнат в квартире, где используется однорожковая люстра. В данном случае ток течет от источника энергии через автомат, выключатель, лампочку и обратно к источнику энергии.

Разветвленные – это цепи имеющие одно или более ответвленных путей протекания тока. То есть ток начиная свой путь от источника энергии разветвляется на несколько ветвей потребителей, при этом меняя свое значение. Одним из несложных примеров такой цепи является приведенная выше цепь освещения комнаты в квартире, но только с многорожковой люстрой и многоклавишным выключателем. Ток от источника энергии доходит через автомат к многоклавишному выключателю, а дальше разветвляется на несколько ламп люстры, а далее через общий провод обратно к источнику энергии.

Линейной считается такая электрическая цепь, где характеристики всех ее элементов не зависят от величины и характера протекающего тока и приложенного напряжения.

Нелинейной считается цепь содержащая хотя бы один элемент, характеристики которого зависят от протекающего тока и приложенного напряжения.

2. Эквивалентные преобразования в электрических цепях. Определение эквивалентного сопротивления при последовательном, параллельном и смешанном соединении элементов электрических цепей.

При решении задач принято преобразовывать схему, так, чтобы она была как можно проще. Для этого применяют эквивалентные преобразования. Эквивалентными называют такие преобразования части схемы электрической цепи, при которых токи и напряжения в не преобразованной её части остаются неизменными.

Существует четыре основных вида соединения проводников: последовательное, параллельное, смешанное и мостовое.

Последовательное соединение – это такое соединение, при котором сила тока на всем участке цепи одинакова. Ярким примером последовательного соединения является старая елочная гирлянда. Там лампочки подключены последовательно, друг за другом. Теперь представьте, одна лампочка перегорает, цепь нарушена и остальные лампочки гаснут. Выход из строя одного элемента, ведет за собой отключение всех остальных, это является существенным недостатком последовательного соединения.

При последовательном соединении сопротивления элементов суммируются.

Параллельное соединение – это соединение, при котором напряжение на концах участка цепи одинаково. Параллельное соединение наиболее распространено, в основном потому, что все элементы находятся под одним напряжением, сила тока распределена по-разному и при выходе одного из элементов все остальные продолжают свою работу.

При параллельном соединении эквивалентное сопротивление находится как:


В случае двух параллельно соединенных резисторов

В случае трех параллельно подключенных резисторов:


Смешанное соединение – соединение, которое является совокупностью последовательных и параллельных соединений. Для нахождения эквивалентного сопротивления нужно, “свернуть” схему поочередным преобразованием параллельных и последовательных участков цепи.

Сначала найдем эквивалентное сопротивление для параллельного участка цепи, а затем прибавим к нему оставшееся сопротивление R 3 . Следует понимать, что после преобразования эквивалентное сопротивление R 1 R 2 и резистор R 3 , соединены последовательно.

Итак, остается самое интересное и самое сложное соединение проводников.

Мостовая схема соединения представлена на рисунке ниже.

Для того чтобы свернуть мостовую схему, один из треугольников моста, заменяют эквивалентной звездой.

И находят сопротивления R 1 , R 2 и R 3 .

Затем находят общее эквивалентное сопротивление, учитывая, что резисторы R 3 ,R 4 и R 5 ,R 2 соединены между друг другом последовательно, а в парах параллельно.

Электромагнитное устройство с осуществляемыми в нем, а также в окружающем его пространстве физическими процессами, в теории электрических цепей заменяет определенный расчетный эквивалент, называемый электроцепью.

Электромагнитные процессы в такой цепи описываются понятиями «ток», «ЭДС», «напряжение», «индуктивность», «емкость» и «сопротивление». Электрическая цепь существует при этом в двух вариантах:

  • линейная:
  • нелинейная.

Линейная электрическая цепь

Электрические цепи с постоянными параметрами считаются в физике такими цепями, в которых сопротивления резисторов $R$, индуктивность катушек $L$ и емкость конденсаторов $С$ будут постоянными и не зависимы от действующих в цепи напряжений, токов и напряжений (линейные элементы).

При условии независимости сопротивления резистора $R$ от тока, линейная зависимость между током и падением напряжения выражается на основании закона Ома, то есть:

Вольтамперная характеристика резистора при этом представляет собой прямую линию.

При независимости индуктивности катушки от величины тока, протекающего в ней, потокосцепление самоиндукции катушки $ф$ оказывается прямо пропорциональным этому току:

При условии независимости емкости конденсатора С от приложенного к обкладкам напряжения $uc$, накопленный на пластинах заряд $q$ и напряжение $uc$ оказываются связанными между собой через линейную зависимость.

При этом линейность сопротивления, индуктивности, а также емкости носит сугубо условный характер поскольку в действительности все реальные элементы электроцепи не линейны. При прохождении через резистор тока он будет нагреваться с изменением сопротивления.

При этом в нормальном рабочем режиме элементов подобные изменения обычно настолько несущественны, что при расчетах не берутся во внимание (такие элементы считаются в электрической цепи линейными).

Транзисторы, функционирующие в режимах, когда применяются прямолинейные участки их вольтамперных характеристик, условно также могут рассматриваться в формате линейных устройств.

Определение 1

Электрическая цепь, которая будет состоять из линейных элементов, называется линейной. Такие цепи характеризуют линейные уравнения для токов и напряжений и заменяются линейными схемами замещения.

Нелинейная электрическая цепь

Определение 2

Нелинейной электрической цепью считается та, которая содержит один или несколько нелинейных элементов.

Нелинейный элемент в электроцепи имеет параметры, зависимые от определяющих их величин. Нелинейная электрическая цепь имеет ряд важных отличий от линейной и в ней зачастую возникают специфические явления.

Нелинейные элементы характеризуют статические $R_{ст}$, $L_{ст}$, и $C_{ст}$ и дифференциальные $(R_д, L_д, C_д)$ параметры. Статические параметры нелинейного элемента определяются в виде отношения ординаты избранной точки характеристики к ее абсциссе:

$F_{ст} = \frac{yA}{YX}$

Дифференциальные параметры нелинейного элемента определяются в форме отношения малого приращения ординаты выбранной точки характеристики к малому приращению ее абсциссы:

$F{диф} = \frac{dy}{B}$

Методы расчета нелинейных цепей

Нелинейность параметров элементов усложняется расчетом цепи, поэтому рабочим участком выбирается или линейный, или близкий к нему участок характеристики. При этом рассматривается с допустимой точностью элемент как линейный. При невозможности этого применяются специальные методы расчета, такие, как:

  • графический метод;
  • метод аппроксимации.

Идея графического метода ориентирована на построение характеристик элементов цепи (вольт–амперной $u(i)$, вебер–амперной $ф(i)$ или кулон–вольтной $q(u)$) и их последующем графическом преобразовании с целью получения соответствующей характеристики для всей цепи или какого-то из ее участков.

Графический метод расчета считается наиболее простым и наглядным в использовании, обеспечивающим необходимую точность. В то же время, его применяют при незначительном количестве нелинейных элементов в цепи, поскольку он требует максимальной аккуратности при проведении графических построений.

Идея метода аппроксимации направлена на замену аналитическим выражением экспериментально полученной характеристики нелинейного элемента. Различают такие виды:

  • аналитическая аппроксимация (при которой характеристика элемента заменяется на аналитическую функцию);
  • кусочно–линейная (при ней характеристика элемента заменяется комплексом прямолинейных отрезков).

Точность аналитической аппроксимации определяет правильность выбора аппроксимирующей функции и подбор соответствующих коэффициентов. Преимуществом кусочно–линейной аппроксимации выступает простота при применении и возможность рассматривать элемент в формате линейного.

Более того, в ограниченном диапазоне изменений сигнала, где его, благодаря трансформациям, можно считать линейным (режим малого сигнала), нелинейный элемент (с допустимой точностью) можно заменить эквивалентным линейным активным двухполюсником:

$U = E + R_{диф} I$,

где $R_{диф}$ –дифференциальное сопротивление нелинейного элемента на линеаризуемом участке.

Линейная электрическая цепь

English: Line circuit

Электрическая цепь, электрические сопротивления, индуктивности и электрические емкости участков которой не зависят от значений и направлений токов и напряжений в цепи (по ГОСТ 19880-74)

Строительный словарь .

Смотреть что такое "Линейная электрическая цепь" в других словарях:

    линейная электрическая цепь - Электрическая цепь, у которой электрические напряжения и электрические токи или(и) электрические токи и магнитные потокосцепления, или(и) электрические заряды и электрические напряжения связаны друг с другом линейными зависимостями. [ГОСТ Р 52002 … Справочник технического переводчика

    Линейная электрическая цепь - 119. Линейная электрическая цепь Электрическая цепь, электрические сопротивления, индуктивности и электрические емкости участков которой не зависят от значений и направлений токов и напряжений в цепи Источник: ГОСТ 19880 74: Электротехника.… …

    Линейная электрическая цепь - – электрическая цепь, электрические сопротивления, индуктивности и электрические емкости участков которой не зависят от значений и направлений токов и напряжений в цепи. ГОСТ 19880 74 … Коммерческая электроэнергетика. Словарь-справочник

    линейная электрическая цепь - Электрическая цепь, сопротивления, индуктивности и емкости участков которой не зависят от величин и направлений токов и напряжений в цепи … Политехнический терминологический толковый словарь

    Электрическая цепь линейная (нелинейная) - электрическая цепь, у которой электрические напряжения и электрические токи или (и) электрические токи и магнитные потокосцепления, или (и) электрические заряды и электрические напряжения связаны друг с другом линейными (нелинейными)… … Официальная терминология

    Линейная [нелинейная] электрическая цепь - 1. Электрическая цепь, у которой электрические напряжения и электрические токи или(и) электрические токи и магнитные потокосцепления, или(и) электрические заряды и электрические напряжения связаны друг с другом линейными [нелинейными]… … Телекоммуникационный словарь

    Совокупность источников, приёмников электрической энергии и соединяющих их проводов. Кроме этих элементов, в Э. ц. могут входить выключатели, переключатели, предохранители и другие электрические аппараты защиты и коммутации, а также… … Большая советская энциклопедия

    линейная - 98 линейная [нелинейная] электрическая цепь Электрическая цепь, у которой электрические напряжения и электрические токи или(и) электрические токи и магнитные потокосцепления, или(и) электрические заряды и электрические напряжения связаны друг с… … Словарь-справочник терминов нормативно-технической документации

    В Викисловаре есть статья «цепь» Цепь: В технике: Цепь конструкция, состоящая из одинаковых звеньев (в изначальном значении металлических колец), соединённых … Википедия

    Рисунок 1 Цепь Чуа. L,G,C1,C2 пассивные элементы, g диод Чуа. В классическом варианте предлагаются следующие значения элементов: L=1/7Гн;G=0.7См;C1=1/9Ф;C2=1Ф Цепь Чуа, схема Чуа простейшая электрическая цепь, демонстрирующая режимы… … Википедия

Линейные электрические цепи постоянного тока

3.1. Основные определения.

3.2. Элементы электрических цепей (ЭЦ).

3.3. Схемы замещения источников электрической энергии.

3.4. Топологии ЭЦ.

3.5. Законы Ома и Кирхгофа в линейных ЭЦ.

3.6. Эквивалентные преобразования ЭЦ.

3.7. Методы анализа линейных ЭЦ.

Основные определения

Электрическая цепь – совокупность электротехнических устройств, состоящих из соответствующим образом соединённых источников и приёмников энергии, предназначенных для генерации, передачи, распределения и преобразования электрической энергии и/или информации.

Элементы цепи – отдельные объекты, выполняющие строго определённые функции. Основные элементы цепи – источники электрической энергии (ЭЭ) (генераторы – устройства производства ЭЭ), и приёмники (устройства, потребляющие ЭЭ). У каждого элемента цепи существует определённое количество контактов или полюсов. При этом различают:

· двухполюсные элементы (источники энергии, за исключением многофазных и управляемых; резисторы, катушки индуктивности, конденсаторы);

· многополюсные элементы (триоды, трансформаторы, усилители).

Кроме того, все элементы делятся на:

· активные – содержащие источник ЭЭ;

· пассивные – в которых ЭЭ рассеивается (резистор) либо накапливается (конденсатор или катушка индуктивности).

Основными характеристиками элементов являются следующие:

· вольт-амперные (для резисторов - R);

· вебер-амперные (для катушки - L);

· кулон-вольтные (для конденсаторов - С);

описываемые дифференциальными и (или) алгебраическими уравнениями.

Коэффициенты, связывающие переменные, их интегралы и производные в этих уравнениях, называются параметрами элементов .

Мгновенные значения напряжения или тока – это их значения в любой заданный момент времени, они являются функциями времени и обозначаются строчными буквами: u(t), i(t), e(t).

Мгновенное значение тока – равно скорости изменения заряда:

При этом за положительное направление тока принимают движение положительных зарядов (от «+» к «-»).

Мгновенное значение напряжения – есть значение электрической энергии (dW ), затраченной на перемещение единицы электрического заряда:

При этом за положительное направление напряжения принимают направление, совпадающее с током.

С другой стороны, напряжение можно определить как разность потенциалов двух точек:

При этом потенциалом данной точки называется отношение потенциальной энергии заряда к величине этого заряда: . Напряжение участка цепи, по которому протекает электрический ток, называют падением напряжения.

Мгновенное значение электрической энергии, измеряемое в Дж (тепловая), Вт.с, В.А.с. (электрическая), э.В (атомная-ядерная), определяется (с учетом (1) и (2): dW = Udq):


Тогда мгновенная электрическая мощность определится как скорость изменения мгновенной электрической энергии (Дж/с, Вт, ВА):

Поскольку мгновенные значения тока и напряжения могут быть как положительными, так и отрицательными, то и мгновенная мощность также может быть положительной, что означает увеличение или потребление ЭЭ цепью, и отрицательной, что означает убывание или отдачу ЭЭ из цепи.

Изучение свойств цепей осуществляется методами анализа , т.е. определением реакции или отклика цепи с известной структурой и параметрами на заранее (априори) заданные воздействия (измерительные сигналы – дельта-функция, функция включения, гармоническое колебание). Реализация известных ЭЦ с заданными свойствами осуществляется методами синтеза , т.е. определением структуры или топологии цепи при известных входных и выходных сигналах и/или заданной функциональной зависимости между ними. При этом задачи синтеза сложнее задач анализа, поскольку их решение не однозначно, т.е. заданные свойства цепи могут быть реализованы различными структурами с различными характеристиками.

Поделиться: