Опыт штерна определение. Опыт штерна и герлаха

правильность основ кинетической теории газов . Исследуемым газом в опыте служили разреженные пары серебра, которые получались при испарении слоя серебра, нанесённого на платиновую проволоку, нагревавшуюся электрическим током. Проволока располагалась в сосуде, из которого воздух был откачан, поэтому атомы серебра беспрепятственно разлетались во все стороны от проволоки. Для получения узкого пучка летящих атомов на их пути была установлена преграда со щелью, через которую атомы попадали на латунную пластинку, имевшую комнатную температуру. Атомы серебра осаждались на ней в виде узкой полоски, образуя серебряное изображение щели. Специальным устройством весь прибор приводился в быстрое вращение вокруг оси, параллельной плоскости пластинки. Вследствие вращения прибора атомы попадали в др. место пластинки: пока они пролетали расстояние l от щели до пластинки, пластинка смещалась. Смещение растет с угловой скоростью w прибора и уменьшается с ростом скорости v атомов серебра. Зная w и l , можно определить v. Т. к. атомы движутся с различными скоростями, полоска при вращении прибора размывается, становится шире. Плотность осадка в данном месте полоски пропорциональна числу атомов, движущихся с определённой скоростью. Наибольшая плотность соответствует наиболее вероятной скорости атомов. Полученные в Штерна опыт значения наиболее вероятной скорости хорошо согласуются с теоретическим значением, полученным на основе Максвелла распределения молекул по скоростям.

Статья про слово "Штерна опыт " в Большой Советской Энциклопедии была прочитана 5744 раз

В середине XIX века была сформулирована молекулярно-кинетическая теория, но тогда не было никаких доказательств существования самих молекул. Вся теория базировалась на предположении о движении молекул, но как измерить скорость их движения, если они невидимы?

Теоретики первыми нашли выход. Из уравнения молекулярно-кинетической теории газов известно, что

Получена формула для расчета среднеквадратичной скорости, но масса молекулы неизвестна. Запишем по-другому значение υ кв:

(2.1.2)

А мы знаем, что , тогда

(2.1.3)

Где Р – давление; ρ - плотность. Это уже измеряемые величины.

Например, при плотности азота, равной 1,25 кг/м, 3 , при t = 0 °С и P = 1 атм, скорости молекул азота . Для водорода: .

При этом интересно отметить, что скорость звука в газе близка к скорости молекул в этом газе , где γ – коэффициент Пуассона. Это объясняется тем, что звуковые волны переносятся молекулами газа.

Проверка того факта, что атомы и молекулы идеальных газов в термически равновесном пучке имеют различные скорости, была осуществлена немецким физиком Отто Штерном (1888-1969) в 1920 г. Схема его установки приведена на рис. 2.1.


Рис. 2.1

Платиновая нить А , покрытая снаружи серебром, располагается вдоль оси коаксиальных цилиндров S 1 , S 3 ,. Внутри цилиндров поддерживается низкое давление порядка Па. При пропускании тока через платиновую нить она разогревается до температуры выше точки плавления серебра (961,9 °С). Серебро испаряется, и его атомы через узкие щели в цилиндре S 1 , и диафрагме S 2 , летят к охлаждаемой поверхности цилиндра S 1 , на которой они осаждаются. Если цилиндры S 1 , S 3 и диафрагма не вращаются, то пучок осаждается в виде узкой полоски D на поверхности цилиндра S 3 . Если же вся система приводится во вращение с угловой скоростью то изображение щели смещается в точку и становится расплывчатым.

Пусть l – расстояние между D и , измеренное вдоль поверхности цилиндра S 3 , оно равно где – линейная скорость точек поверхности цилиндра S 3 , радиусом R ; - время прохождения атомами серебра расстояния . Таким образом, имеем откуда – можно определить величину скорости теплового движения атомов серебра. Температура нити в опытах Штерна равнялась 1200 °С, что соответствует среднеквадратичной скорости . В эксперименте для этой величины получилось значение от 560 до 640 м/с. Кроме того, изображение щели всегда оказывалось размытым, что указывало на то, что атомы Ag движутся с различными скоростями.

Таким образом, в этом опыте были не только измерены скорости газовых молекул, но и показано, что они имеют большой разброс по скоростям. Причина – в хаотичности теплового движения молекул. Ещё в XIX веке Дж. Максвелл утверждал, что молекулы, беспорядочно сталкиваясь друг с другом, как-то «распределяются» по скоростям, причём вполне определённым образом.

Документальные учебные фильмы. Серия «Физика».

Наличие у атомов магнитных моментов и их квантование было доказано прямыми опытами Штерна и Герлаха (1889- 1979) в 1921 г. В сосуде с высоким вакуумом создавался с помощью диафрагм резко ограниченный атомный пучок исследуемого элемента, испаряющегося в печи К. Пучок проходил через сильное магнитное поле Н между полюсньми наконечниками N и S электромагнита. Один из наконечников (N) имел вид призмы с острым ребром, а вдоль другого (S) была выточена канавка. Благодаря такой конструкции полюсных наконечников магнитное поле получалось сильно неоднородным. После прохождения через магнитное поле пучок попадал на фотопластинку Р и оставлял на ней след.

Рассчитаем поведение атомного пучка сначала с классической точки зрения, предполагая, что никакого квантования магнитных моментов нет. Если m-магнитный момент атома, то на атом в неоднородном магнитном поле действует сила
Направим ось Z вдоль магнитного поля (т. е. от N к S перпендикулярно к полюсным наконечникам). Тогда проекция силы в этом направлении будет
Первые два слагаемых в этом выражении не играют роли.

В самом деле, по классическим представлениям атом в магнитном поле совершает прецессию вокруг оси Z, вращаясь с ларморовской частотой
(заряд лектрона обозначен -е). Поэтому проекции совершают колебания с той же частотой, становясь попеременно то положительными, то отрицательными. Если угловая скорость прецессии достаточно велика, то силу fz можно усреднить по времени. При этом первые два члена в выражении для fz обратятся в нуль, и можно написать

Чтобы составить представление о степени допустимости та кого усреднения, произведем численную оценку. Период ларморовской прецессии равен ,

где поле Н измеряется в гауссах. Например, при Н = 1000 Гс получаем с. Если скорость атомов в пучке равна = 100 м/с = см/с, то за это время атом пролетает расстояние см, пренебрежимо малое по сравнению со всеми характерными размерами установки. Это и доказывает применимость проведенного усреднения.

Но формула может быть оправдана и с квантовой точки зрения. В самом деле, включение сильного магнитного поля вдоль оси Z приводит к состоянию атома только с одной определенной составляющей магнитного момента, а именно . Остальные две составляющие в этом состоянии не могут иметь определенных значений. При измерениях в этом состоянии получили бы различные значения и притом их средние были бы равны нулю. Поэтому и при квантовом рассмотрении усреднение оправдано.

Тем не менее следует ожидать различных результатов опыта с классической и с квантовой точек зрения. В опытах Штерна и Герлаха сначала получался след атомного пучка при выключенном магнитном поле, а затем при включенном. Если бы проекция могла принимать всевозможные непрерывные значения, как требует классическая теория, то сила fz также принимала бы всевозможные непрерывные значения. Включение магнитного поля приводило бы только к уширению пучка. Не то следует ожидать по квантовой теории. В этом случае проекция mz, а с ней и средняя сила fz квантованы, т. е. могут принимать только ряд дискретных избранных значений. Если орбитальное квантовое число атома равно I , то по теории при расщеплении получится пучков (т. е. оно равно числу возможных значений, которые может принимать квантовое число m). Таким образом, в зависимости от значения числа I следовало бы ожидать, что пучок расщепится на 1, 3, 5, ... составляющих. Ожидаемое число составляющих должно было бы быть всегда нечетным.

Опыты Штерна и Герлаха доказали квантование проекции . Однако их результаты не всегда соответствовали теории, изложенной выше. В первоначальных опытах применялись пучки атомов серебра. В магнитном поле пучок расщеплялся на две составляющие. То же получалось для атомов водорода. Для атомов других химических элементов получалась и более сложная картина расщепления, однако число расщепленных пучков получалось не только нечетным, что требовалось теорией, но и четным, что противоречило ей. В теорию необходимо было внести коррективы.

К этому следует добавить результаты опытов Эйнштейна и де Гааза (1878-1966), а также опытов Барнета (1873-1956) по определению гиромагнитного отношения. Для железа, например, оказалось, что гиромагнитное отношение равно т. е. вдвое больше, чем требуется по теории.

Наконец, оказалось, что спектральные термы щелочных металлов имеют так называемую дублетную структуру, т. е. состоят из двух близко расположенных уровней. Для описания этой структуры трех квантовых чисел n, I , m оказалось недостаточно-потребовалось четвертое квантовое число. Это явилось главным мотивом, послужившим Уленбеку (р. 1900) и Гаудсмиту (1902-1979) в 1925 г. для введения гипотезы о спине электрона. Сущность этой гипотезы состоит в том, что у электрона есть не только момент количества движения и магнитный момент, связанные с перемещением этой частицы как целого. Электрон имеет также собственный или внутренний механический момент количества движения, напоминая в этом отношении классический волчок. Этот собственный момент количества движения и называется спином (от английского слова to spin - вертеться). Соответствующий ему магнитный момент называется спиновым магнитным моментом. Эти моменты обозначаются соответственно через в отличие от орбитальных моментов Спин чаще обозначают просто через s .

В опытах Штерна и Герлаха атомы водорода находились в s-состоянии, т. е. не обладали орбитальными моментами. Магнитный момент ядра пренебрежимо мал. Поэтому Уленбек и Гаудсмит предположили, что расщепление пучка обусловлено не орбитальным, а спиновым магнитным моментом. То же самое относится к опытам с атомами серебра. Атом серебра имеет единственный наружный электрон. Атомный остов ввиду его симметрии спиновым и магнитным моментами не обладает. Весь магнитный момент атома серебра создается только одним наружным электроном. Когда атом находится в нормальном, т. е. s-состоянии, то орбитальный момент валентного электрона равен нулю - весь момент является спиновым.

Сами Уленбек и Гаудсмит предполагали, что спин возникает из-за вращения электрона вокруг собственной оси. Существовавшая в то время модель атома получила еще большее сходство с Солнечной системой. Электроны (планеты) не только вращаются вокруг ядра (Солнца), но и вокруг собственных осей. Однако сразу же выяснилась несостоятельность такого классического представления о спине. Паули систематически ввел спин в квантовую механику, но исключил всякую возможность классического истолкования этой величины. В 1928 г. Дирак показал, что спин электрона автоматически содержится в его теории электрона, основанной на релятивистском волновом уравнении. В теории Дирака содержится также и спиновый магнитный момент электрона, причем для гиромагнитного отношения получается значение, согласующееся с опытом. При этом о внутренней структуре электрона ничего не говорилось - последний рассматривался как точечная частица, обладающая лишь зарядом и массой. Таким образом, спин электрона оказался квантово-релятивистским эффектом, не имеющим классического истолкования. Затем концепция спина, как внутреннего момента количества движения, была распространена на другие элементарные и сложные частицы и нашла подтверждение и широкие применения в современной физике.

Разумеется, в общем курсе физики нет возможности вдаваться в подробную и строгую теорию спина. Мы примем в качестве исходного положения, что спину s соответствует векторный оператор проекции которого удовлетворяют таким же перестановочным соотношениям, что и проекции оператора орбитального момента, т. е.

Из них следует, что определенные значения в одном и том же состоянии могут иметь квадрат полного спина и одна из его проекций на определенную ось (принимаемую обычно за ось Z). Если максимальное значение проекции sz (в единицах ) равно s, то число всех возможных проекций, соответствующих данному s, будет равно 2s + 1. Опыты Штерна и Герлаха показали, что для электрона это число равно 2, т. е. 2s + 1 = 2, откуда s = 1/2. Максимальное значение, которое может принимать проекция спина на избранное направление (в единицах ), т. е. число s, и принимается за значение спина частицы.

Спин частицы может быть либо целым, либо полуцелым. Для электрона, таким образом, спин равен 1/2. Из перестановочных соотношений следует, что квадрат спина частицы равен , а для электрона (в единицах 2).
Измерения проекции магнитного момента по методу Штерна и Герлаха показали, что для атомов водорода и серебра величина равна магнетону Бора , т. е. . Таким образом, гиромагнитное отношение для электрона

Экспериментальная установка представляет собой два находящихся в вакууме жестко связанных между собой коаксиальных цилиндра, по оси которых натянута платиновая нить, покрытая серебром. Малый цилиндр радиуса r имеет вертикальную щель. Если по нити пропустить электрический ток, она будет нагреваться, серебро будет испарятся, его атомы будут пролетать через щель и осаждаться на большом цилиндре радиуса R , образуя изображение узкой щели в виде узкой полоски почернения серебра. Картина изменится, если установку привести во вращение с угловой скоростью w. Изображение щели будет размыто с ярко выраженным максимумом. Это говорит о том, что атомы серебра имеют неодинаковые скорости, вследствие этого они имеют разные времена пробега и, поскольку цилиндр вращается, будут достигать его поверхности в разных точках. Наличие максимума в почернении, говорит о том, что имеется некоторая наиболее вероятная скорость атомов серебра. При этом простые вычисления дают возможность оценить скорость v атомов серебра. Приравнивая время пролета атомов между поверхностями цилиндров и время, в течение которого точки поверхности большого цилиндра сместились на x получим:

Понимание того, что в основе строения любого вещества лежит существование мельчайших частиц - атомов и молекул, находящихся в непрерывном движении и активном взаимодействии между собой, - возникло в XIX веке. В разработке молекулярно-кинетической теории на бумаге участвовали физики Рудольф Клаузиус, Людвиг Больцман и особенно Джеймс Максвелл. Вскоре последовали и подтверждающие её практические исследования. Важнейшим из них является опыт Штерна, проведенный в 1920 году.

Гений эксперимента

В биографии нобелевского лауреата по физике (1943 г.) Отто Штерна (1888-1969) есть период, когда он успешно занимался теоретическими разработками проблем термодинамики на основе постулатов квантовой механики. Руководителем его научной работы одно время был Альберт Эйнштейн. Подлинное уважение со стороны научной общественности ему принесла деятельность физика-экспериментатора. Он разработал уникальные приборы, опытным путём подтверждавшие и развивавшие теоретические выкладки.

Кроме классического эксперимента по измерению скорости теплового движения частиц, известен опыт Штерна-Герлаха, в результате которого было доказано существование спина - момента импульса атомного ядра или атома. Этот эксперимент, проведенный в 1922 году совместно с Вальтером Герлахом (1889-1979), стал важнейшим доказательством основных постулатов квантовой теории.

Описание прибора

Эксперимент 1920 года, результатом которого стало доказательство распределения скоростей теплового движения молекул, был осуществлен с помощью технически несложной установки. Основой прибора послужили два коаксиальных (соосных) цилиндра разного диаметра, внутри которых путём откачки воздуха была создана область низкого давления. На общей оси расположена проволока из платины с тонким серебряным напылением. При подключении к концам проводника электрического тока происходит нагревание проволоки до температуры, превышающей точку плавления серебра. Возникает испарение атомов металла, которые начинают прямолинейное равномерное движение к внутренней поверхности маленького цилиндра.

В малом цилиндре прорезается узкая щель, сквозь которую атомы металла проникают внутрь большого. Внешний, наружный цилиндр имеет комнатную температуру, что обеспечивает быстрое охлаждение разогретых металлических частиц. Если цилиндры не вращаются, атомы «прилипают» к экрану и оседают напротив прорези в виде ровной посеребренной полоски. Опыт Штерна заключался в следующем: когда оба цилиндра начинали вращать с определенной угловой скоростью, образовывалась размытая полоска налета, смещенная в ту сторону, которая противоположна направлению вращения.

Измерение скорости молекулярного движения

Главный показатель, который сделал видимым опыт Штерна, — скорость молекул V. Было установлено, что средняя скорость, с которой двигаются при испарении атомы серебра при нагревании спирали до 1200 °C, - от 560 до 650 м/с.

Для измерения её Штерн получил все необходимые данные:

S - смещение полосы серебра при вращении от того положения, которое она занимала в состоянии покоя;

L - путь, пройденный атомами (расстояние между внутренними поверхностями цилиндров);

U - скорость перемещения точек поверхности внешнего цилиндра;

T - время пролета атомов.

Результат, экспериментально полученный немецким физиком — V = S / U = L / V = UL / S — совпал со значениями, полученными в результате рассмотрения молекулярно-кинетической теории. Средняя скорость движения молекул серебра, определенная теоретически, была равна 584 м/с.

Это стало доказательством справедливости постулатов, сформулированных её основоположниками, видное место среди которых занимает Джеймс Максвелл.

Закон распределения Максвелла

Кратко опыт Штерна можно определить как визуализацию распределения скорости теплового движения атомов и молекул. При осаждении серебра на стенках внешнего цилиндра, когда система находится в состоянии покоя, получалась полоска с достаточно четкими краями. При вращении цилиндров она выходила размытой.

Причина этого - различие в скорости движения атомов, испускаемых при испарении серебряного покрытия проволоки. Более быстрые частицы осаждались с меньшим смещением от прорези в малом цилиндре, а те, что двигались медленнее, успевали преодолеть большее расстояние. Соотношение скоростей укладывается в пропорцию, предсказанную вычислениями Максвелла. Кривая поперечного сечения полученного напыления совпадает по форме с графическим выражением формул, послуживших основой молекулярно-кинетической теории.

Теория, проверенная практикой

Большое значение, которое имеет экспериментальная физика, опыт Штерна показывает особенно наглядно. Умение найти способ доказательства правильности теоретических постулатов особенно ценно, когда предметом научных исследований становятся объекты, неразличимые невооруженным глазом.

Последующая история науки, когда физика вступила в фазу исследования строения атома в период поиска элементарных частиц, доказала это. Одним из пионеров нового течения был немецкий физик, гениальный экспериментатор Отто Штерн.

Поделиться: