Волновые свойства частиц. Волновые свойства частиц вещества Дифракция фотонов

4.4.1. Гипотеза де Бройля

Важным этапом в создании квантовой механики явилось обнаружение волновых свойств микрочастиц. Идея о волновых свойствах была первоначально высказана как гипотеза французским физиком Луи де Бройлем.

В физике в течение многих лет господствовала теория, согласно которой свет есть электромагнитная волна. Однако после работ Планка (тепловое излучение), Эйнштейна (фотоэффект) и других стало очевидным, что свет обладает корпускулярными свойствами.

Чтобы объяснить некоторые физические явления, необходимо рассматривать свет как поток частиц-фотонов. Корпускулярные свойства света не отвергают, а дополняют его волновые свойства.

Итак, фотон-элементарная частица света, обладающая волновыми свойствами.

Формула для импульса фотона

. (4.4.3)

По де Бройлю, движение частицы, например, электрона, подобно волновому процессу с длиной волны λ , определяемой формулой (4.4.3). Эти волны называют волнами де Бройля . Следовательно, частицы (электроны, нейтроны, протоны, ионы, атомы, молекулы) могут проявлять дифракционные свойства.

К.Дэвиссон и Л.Джермер впервые наблюдали дифракцию электронов на монокристалле никеля.

Может возникнуть вопрос: что происходит с отдельными частицами, как образуются максимумы и минимумы при дифракции отдельных частиц?

Опыты по дифракции пучков электронов очень малой интенсивности, то есть как бы отдельных частиц, показали, что при этом электрон не "размазывается" по разным направлениям, а ведет себя как целая частица. Однако вероятность отклонения электрона по отдельным направлениям в результате взаимодействия с объектом дифракции различная. Наиболее вероятно попадание электронов в те места, которые по расчету соответствуют максимумам дифракции, менее вероятно их попадание в места минимумов. Таким образом, волновые свойства присущи не только коллективу электронов, но и каждому электрону в отдельности.

4.4.2. Волновая функция и ее физический смысл

Так как с микрочастицей сопоставляют волновой процесс, который соответствует ее движению, то состояние частиц в квантовой механике описывается волновой функцией, зависящей от координат и времени: .

Если силовое поле, действующее на частицу, является стационарным, то есть не зависящим от времени, то ψ-функцию можно представить в виде произведения двух сомножителей, один из которых зависит от времени, а другой от координат:

Отсюда следует физический смысл волновой функции:

4.4.3. Соотношение неопределенностей

Одним из важных положений квантовой механики являются соотношения неопределенностей, предложенные В.Гейзенбергом.

Пусть одновременно измеряют положение и импульс частицы, при этом неточности в определениях абсциссы и проекции импульса на ось абсцисс равны соответственно Δx и Δр x .

В классической физике нет каких-либо ограничений, запрещающих с любой степенью точности одновременно измерить как одну, так и другую величину, то есть Δx→0 и Δр x→ 0.

В квантовой механике положение принципиально иное: Δx и Δр x , соответствующие одновременному определению x и р x , связаны зависимостью

Формулы (4.4.8), (4.4.9) называют соотношениями неопределенностей .

Поясним их одним модельным экспериментом.

При изучении явления дифракции было обращено внимание на то, что уменьшение ширины щели при дифракции приводит к увеличению ширины центрального максимума. Аналогичное явление будет и при дифракции электронов на щели в модельном опыте. Уменьшение ширины щели означает уменьшение Δ x (рис. 4.4.1), это приводит к большему "размазыванию" пучка электронов, то есть к большей неопределенности импульса и скорости частиц.


Рис. 4.4.1.Пояснение к соотношению неопределенности.

Соотношение неопределенностей можно представить в виде

, (4.4.10)

где ΔE - неопределенность энергии некоторого состояния системы; Δt -промежуток времени, в точение которого оно существует. Соотношение (4.4.10) означает, что чем меньше время существования какого-либо состояния системы, тем более неопределенно его значение энергии. Энергетические уровни Е 1 , Е 2 и т.д. имеют некоторую ширину (рис.4.4.2)), зависящую от времени пребывания системы в состоянии, соответствующем этому уровню.


Рис. 4.4.2.Энергетические уровни Е 1 , Е 2 и т.д. имеют некоторую ширину.

"Размытость" уровней приводит к неопределенности энергии ΔE излучаемого фотона и его частоты Δν при переходе системы с одного энергетического уровня на другой:

,

где m- масса частицы; ; Е и Е n -ее полная и потенциальная энергии (потенциальная энергия определяется силовым полем, в котором находится частица, и для стационарного случая не зависит от времени)

Если частица перемещается только вдоль некоторой линии, например вдоль оси ОХ (одномерный случай), то уравнение Шредингера существенно упрощается и принимает вид

(4.4.13)

Одним из наиболее простых примеров на использование уравнения Шредингера является решение задачи о движении частицы в одномерной потенциальной яме.

4.4.5. Применение уравнения Шредингера к атому водорода. Квантовые числа

Описание состояний атомов и молекул с помощью уравнения Шредингера является достаточно сложной задачей. Наиболее просто она решается для одного электрона, находящегося в поле ядра. Такие системы соответствуют атому водорода и водородоподобным ионам (однократно ионизированный атом гелия, двукратно ионизированный атом лития и т.п.). Однако и в этом случае решение задачи является сложным, поэтому ограничимся лишь качественным изложением вопроса.

Прежде всего в уравнение Шредингера (4.4.12) следует подставить потенциальную энергию, которая для двух взаимодействующих точечных зарядов - e (электрон) и Ze (ядро), - находящихся на расстоянии r в вакууме, выражается следующим образом:

Это выражение является решением уравнения Шредингера и полностью совпадает с соответствующей формулой теории Бора (4.2.30)

На рис.4.4.3 показаны уровни возможных значений полной энергии атома водорода (Е 1 , Е 2 , Е 3 и т.д.) и график зависимости потенциальной энергии Е n от расстояния r между электроном и ядром. С возрастанием главного квантового числа n увеличивается r (см.4.2.26), а полная (4.4.15) и потенциальная энергии стремятся к нулю. Кинетическая энергия также стремится к нулю. Заштрихованная область (Е>0) соответствует состоянию свободного электрона.


Рис. 4.4.3. Показаны уровни возможных значений полной энергии атома водорода
и график зависимости потенциальной энергии от расстояния r между электроном и ядром.

Второе квантовое число - орбитальное l , которое при данном n может принимать значения 0, 1, 2, …., n-1. Это число характеризует орбитальный момент импульса L i электрона относительно ядра:

Четвертое квантовое число - спиновое m s . Оно может принимать только два значения (±1/2) и характеризует возможные значения проекции спина электрона:

.(4.4.18)

Состояние электрона в атоме с заданными n и l обозначают следующим образом: 1s, 2s, 2p, 3s и т.д. Здесь цифра указывает значение главного квантового числа, а буква - орбитальное квантовое число: символам s, p, d, f, соответствуют значения l=0, 1, 2. 3 и т.д.

Свет обладает как волновыми, так и корпускулярными свойствами. Волновые свойства проявляются при распространении света (интерференция, дифракция). Корпускулярные свойства проявляются при взаимодействии света с веществом (фотоэффект, излучение и поглощение света атомами).

Свойства фотона как частицы (энергия Е и импульс p) связаны с его волновыми свойствами (частотой ν и длиной волны λ) соотношениями

; , (19)

где h=6,63×10 -34 Дж - постоянная Планка.

Пытаясь преодолеть трудности боровской модели атома, французский физик Луи де Бройль в 1924 г. выдвинул гипотезу, что сочетание волновых и корпускулярных свойств присуще не только свету, но и любому материальному телу. То есть частицы вещества (например, электроны) обладают волновыми свойствами. высказал предположение, Согласно де Бройлю каждому телу массой m, движущемуся со скоростью υ, соответствует волновой процесс с длиной волны

Наиболее ярко волновые свойства проявляются у микрообъектов (элементарных частиц). Вследствие малой массы длина волны де Бройля оказывается сравнимой с межатомным расстоянием в кристаллах. В этих условиях при взаимодействии пучка частиц с кристаллической решеткой возникают дифракционные явления. Электронам с энергией 150 эВ соответствует длина волны λ»10 -10 м . Такого же порядка межатомные расстояния в кристаллах. Если пучок таких электронов направить на кристалл, то они будут рассеиваться по законам дифракции. Зафиксированная на фотопленке дифракционная картина (электронограмма) содержит информацию о строении трехмерной кристаллической решетки.

Рисунок 6 Иллюстрация волновых свойств вещества

Для иллюстрации волновых свойств частиц часто используют мысленный эксперимент - прохождение пучка электронов (или других частиц) через щель шириной Δх. С точки зрения волновой теории после дифракции на щели пучок будет уширяться с угловой расходимостью θ»λ/Δх. С корпускулярной точки зрения уширение пучка после прохождения щели объясняется появлением у частиц некоторого поперечного импульса. Разброс значений этого поперечного импульса ("неопределенность") есть

(21)

Соотношение (22)

носит название соотношения неопределенностей. Это соотношение на корпускулярном языке отражает наличие волновых свойств у частиц.

Эксперимент по прохождению пучка электронов через две близко расположенные щели может служить еще более яркой иллюстрацией волновых свойств частиц. Этот эксперимент является аналогом оптического интерференционного опыта Юнга.

4. 10 Квантовая модель атома Экспериментальные факты (дифракция электронов, эффект Комптона, фотоэффект и многие другие) и теоретические модели, вроде боровской модели атома, с определенностью свидетельствуют, что законы классической физики становятся неприменимыми для описания поведения атомов и молекул и их взаимодействия со светом. В течение десятилетия между 1920-м и 1930-м гг. ряд выдающихся физиков ХХ в. (де Бройль, Гейзенберг, Борн, Шредингер, Бор, Паули и др.) занимался построением теории, которая могла бы адекватно описать явления микромира. В результате родилась квантовая механика, ставшая основой всех современных теорий строения вещества, можно сказать, основой (вместе с теорией относительности) физики ХХ в.


Законы квантовой механики применимы в микромире, в то же время мы с вами являемся макроскопическими объектами и живем в макромире, управляющимся совершенно иными, классическими законами. Поэтому неудивительно, что многие положения квантовой механики не могут быть проверены нами непосредственно и воспринимаются как странные, невозможные, непривычные. Тем не менее, квантовая механика является, наверное, самой подтвержденной на опыте теорией, так как следствия расчетов, выполненных по законам этой теории, используются практически во всем, что нас окружает, и стали частью человеческой цивилизации (достаточно упомянуть о тех полупроводниковых элементах, работа которых в данный момент позволяют читателю видеть текст на экране монитора, покрытие которого, кстати, также рассчитано с помощью квантовой механики).

К сожалению, используемый квантовой механикой математический аппарат довольно сложен и идеи квантовой механики могут быть изложены лишь словесно и поэтому недостаточно убедительно. С учетом этого замечания попытаемся дать хоть какое-то представление об этих идеях.

Основным понятием квантовой механики является понятие квантового состояния какого-то микрообъекта, или микросистемы (это может быть отдельная частица, атом, молекула, совокупность атомов и т.п.).

Квантовая модель атома отличается от планетарной в первую очередь тем, что в ней электрон не имеет точно определенной координаты и скорости, поэтому бессмысленно говорить о траектории его движения. Можно определить (и нарисовать) только границы области его преимущественного движения (орбитали).

Состояние какого-то микрообъекта, или микросистемы (это может быть отдельная частица, атом, молекула, совокупность атомов и т.п.) может быть охарактеризовано заданием квантовых чисел: значений энергии, импульса, момента импульса, проекции этого момента импульса на какую-то ось, заряда и т.п.

УРАВНЕНИЕ ШРЕДИНГЕРА для движения электрона в кулоновском поле ядра атома водорода используется для анализа квантовой модели атома. В результате решения этого уравнения получается волновая функция, которая зависит не только от координаты и времени t, но и от 4-х параметров, имеющих дискретный набор значений и называемых квантовыми числами. Они имеют названия: главное, азимутальное, магнитное и магнитное спиновое.

Главное квантовое число n может принимать целочисленные значения 1, 2, ... . Оно определяет величину энергии электрона в атоме

Где Е i - энергия ионизации атома водорода (13,6 эВ).

АЗИМУТАЛЬНОЕ (ОРБИТАЛЬНОЕ) квантовое число l определяет модуль момента импульса электрона при его орбитальном движении (24) где s – спиновое квантовое число, которое у каждой частицы имеет только одно значение. Например, для электрона s = (аналогично, для протона и нейтрона). Для фотона s = 1.

Вырожденными называются состояния электрона с одинаковой энергией.

КРАТНОСТЬ ВЫРОЖДЕНИЯ равна количеству состояний с одной и той же энергией.

КРАТКАЯ запись состояния электрона в атоме: ЦИФРА , равная главному квантовому числу, и буква, определяющая азимутальное квантовое число:

Таблица 1 Краткая запись состояния электрона в атоме

Вы, конечно, можете называть это чушью,
но я-то встречала чушь такую, что в
сравнении с ней эта кажется толковым
словарем.
Л. Кэрролл

Что такое планетарная модель атома и в чем ее недостаток? В чем суть модели атома Бора? В чем заключается гипотеза о волновых свойствах частиц? Какие предсказания дает эта гипотеза о свойствах микромира?

Урок-лекция

КЛАССИЧЕСКИЕ МОДЕЛИ АТОМА И ИХ НЕДОСТАТКИ . Идеи о том, что атомы не являются неделимыми частицами и содержат в качестве составляющих частиц элементарные заряды, были впервые высказаны в конце XIX в. Термин «электрон» предложил в 1881 г. английский физик Джордж Стоней. В 1897 г. электронная гипотеза получила экспериментальное подтверждение в исследованиях Эмиля Вихерта и Джозефа Джона Томсона. С этого момента началось создание разнообразных электронных моделей атомов и молекул.

Первая модель Томсона предполагала, что положительный заряд равномерно рассредоточен по всему атому, а в него, подобно изюму в булочке, вкраплены электроны.

Несоответствие этой модели экспериментальным данным стало ясно после проведения в 1906 г. опыта Эрнестом Резерфордом, который исследовал процесс рассеяния α-частиц атомами. Из опыта был сделан вывод, что положительный заряд сосредоточен внутри образования, существенно меньшего, чем размеры атома. Это образование назвали атомным ядром, размеры которого составляли 10 -12 см, а размеры атома - 10 -8 см. В соответствии с классическими представлениями электромагнетизма между каждым электроном и ядром должна действовать кулоновская сила притяжения. Зависимость этой силы от расстояния должна быть такой же, как и в законе всемирного тяготения. Следовательно, движение электронов в атоме должно быть подобно движению планет Солнечной системы. Так родилась планетарная модель атома Резерфорда.

Малое время жизни атома и непрерывный спектр излучения, следующие из планетарной модели, показывали ее несостоятельность при описании движения электронов в атоме.

Дальнейшее исследование устойчивости атома дало ошеломляющий результат: расчеты показали, что за время 10 -9 с электрон должен упасть на ядро вследствие потери энергии на излучение. Кроме того, такая модель давала непрерывные, а не дискретные спектры излучения атомов.

ТЕОРИЯ АТОМА БОРА . Следующий важный шаг в разработке теории атомов был сделан Нильсом Бором. Важнейшей гипотезой, выдвинутой Бором в 1913 г., явилась гипотеза о дискретном строении энергетических уровней электрона в атоме. Это положение проиллюстрировано на энергетических диаграммах (рис. 21). Традиционно на энергетических диаграммах энергия откладывается по вертикальной оси.

Рис. 21 Энергия спутника в поле тяготения Земли (а); энергия электрона в атоме (б)

Отличие движения тела в гравитационном поле (рис. 21, а) от движения электрона в атоме (рис. 21, б) в соответствии с гипотезой Бора состоит в том, что энергия тела может непрерывно изменяться, а энергия электрона при отрицательных значениях может принимать ряд дискретных значений, изображенных на рисунке отрезками голубого цвета. Эти дискретные значения были названы уровнями энергии или, иначе, энергетическими уровнями.

Конечно же, идея дискретных уровней энергии была взята из гипотезы Планка. Изменение энергии электрона в соответствии с теорией Бора могло происходить только скачком (с одного уровня энергии на другой). При этих переходах излучается (переход вниз) или поглощается (переход вверх) квант света, частота которого определяется из формулы Планка hv = Е кванта = ΔЕ атома, т. е. изменение энергии атома пропорционально частоте излученного или поглощенного кванта света.

Теория Бора прекрасно объясняла линейчатый характер атомных спектров. Однако на вопрос о причине дискретности уровней теория фактически не давала ответа.

ВОЛНЫ ВЕЩЕСТВА . Следующий шаг в развитии теории микромира был сделан Луи де Бройлем. В 1924 г. он высказал предположение о том, что движение микрочастиц нужно описывать не как классическое механическое движение, а как некоторое волновое движение. Именно из законов волнового движения должны быть получены рецепты вычисления различных наблюдаемых величин. Так в науке наряду с волнами электромагнитного поля появились волны вещества.

Гипотеза о волновом характере движения частиц была такой же смелой, как и гипотеза Планка о дискретных свойствах поля. Эксперимент, прямо подтверждающий гипотезу де Бройля, был поставлен только в 1927 г. В этом эксперименте наблюдалась дифракция электронов на кристалле, подобно дифракции электромагнитной волны.

Теория Бора была важным шагом в понимании законов микромира. В ней впервые было введено положение о дискретных значениях энергии электрона в атоме, что соответствовало опыту и впоследствии вошло в квантовую теорию.

Гипотеза о волнах вещества позволяла объяснить дискретную природу энергетических уровней. Из теории волн было известно, что ограниченная в пространстве волна всегда имеет дискретные частоты. Примером является волна в таком музыкальном инструменте, как флейта. Частота звучания в этом случае определяется размерами пространства, которыми ограничена волна (размерами флейты). Оказывается, что это общее свойство волн.

Но в соответствии с гипотезой Планка частоты кванта электромагнитной волны пропорциональны энергии кванта. Следовательно, и энергия электрона должна принимать дискретные значения.

Идея де Бройля оказалась очень плодотворной, хотя, как уже говорилось, прямой эксперимент, подтверждающий волновые свойства электрона, был проведен лишь в 1927 г. В 1926 г. Эрвин Шредингер вывел уравнение, которому должна подчиняться волна электрона, и, решив это уравнение применительно к атому водорода, получил все результаты, которые была способна дать теория Бора. Фактически это было началом современной теории, описывающей процессы в микромире, поскольку волновое уравнение легко обобщалось для самых разных систем - многоэлектронных атомов, молекул, кристаллов.

Развитие теории привело к пониманию того, что волна, соответствующая частице, определяет вероятность нахождения частицы в данной точке пространства. Так в физику микромира вошло понятие вероятности

Согласно новой теории волна, соответствующая частице, полностью определяет движение частицы. Но общие свойства волн таковы, что волна не может быть локализована в какой-либо точке пространства, т. е. бессмысленно говорить о координатах частицы в данный момент времени. Следствием этого явилось полное исключение из физики микромира таких понятий, как траектория движения частицы и электронные орбиты в атоме. Красивая и наглядная планетарная модель атома, как оказалось, не соответствует реальному движению электронов.

Все процессы в микромире имеют вероятностный характер. Путем расчетов может быть определена только вероятность протекания того или иного процесса

В заключение вернемся к эпиграфу. Гипотезы о волнах вещества и квантах поля казались чушью многим физикам, воспитанным на традициях классической физики. Дело в том, что эти гипотезы лишены привычной наглядности, которую мы имеем, производя наблюдения в макромире. Однако последующее развитие науки о микромире привело к таким представлениям, что... (см. эпиграф к параграфу).

  • Каким опытным фактам противоречила модель атома Томсона?
  • Что из модели атома Бора осталось в современной теории и что было отброшено?
  • Какие идеи способствовали выдвижению де Бройлем гипотезы о волнах вещества?

Корпускулярно-волновой дуализм – свойство любой микрочастицы обнаруживать признаки частицы (корпускулы) и волны. Наиболее ярко корпускулярно-волновой дуализм проявляется у элементарных частиц. Электрон, нейтрон, фотон в одних условиях ведут себя как хорошо локализованные в пространстве материальные объекты (частицы), двигающиеся с определёнными энергиями и импульсами по классическим траекториям, а в других – как волны, что проявляется в их способности к интерференции и дифракции. Так электромагнитная волна, рассеиваясь на свободных электронах, ведёт себя как поток отдельных частиц – фотонов, являющихся квантами электромагнитного поля (Комптона эффект), причём импульс фотона даётся формулой р = h/λ, где λ – длина электромагнитной волны, а h – постоянная Планка. Эта формула сама по себе – свидетельство дуализма. В ней слева – импульс отдельной частицы (фотона), а справа – длина волны фотона. Дуализм электронов, которые мы привыкли считать частицами, проявляется в том, что при отражении от поверхности монокристалла наблюдается дифракционная картина, что является проявлением волновых свойств электронов. Количественная связь между корпускулярными и волновыми характеристиками электрона та же, что и для фотона: р = h/λ (р – импульс электрона, а λ – его длина волны де Бройля). Корпускулярно-волновой дуализм лежит в основе квантовой физики.

Волна(мех) – процесс, всегда связанный с к-либо материальной средой, занимающей определенный объем в пространстве.

64. Волны де Бройля. Дифракция электронов Волновые свойства микрочастиц.

Развитие представлений о корпускулярно-волновых свойствах материи получило в гипотезе о волновом характере движения микрочастиц. Луи де Бройль из идеи симметрии в природе для частиц вещества и света приписал любой микрочастице некий внутренний периодический процесс (1924). Объединив формулы E = hν и E = mc 2 , он получил соотношение, показывающее, что любой частице соответствует своя длина волны : λ Б = h/mv = h/p, где p- импульс волны-частицы. К примеру, для электрона, имеющего энергию 10 эВ, длина волны де Бройля составляет 0,388 нм. В дальнейшем было показано, что состояние микрочастицы в квантовой механике может быть описано определенной комплекснойволновой функцией координат Ψ(q), причем квадрат модуля этой функции |Ψ| 2 определяет распределение вероятностей значений координат. Эта функция была впервые введена в квантовую механику Шредингером в 1926 г. Таким образом, волна де Бройля не несет энергию, а только отображает “распределение фаз” некоего вероятностного периодического процесса в пространстве. Следовательно, описание состояния объектов микромира носит вероятностный характер , в отличие от объектов макромира, которые описываются законами классической механики.

Для доказательства идеи де Бройля о волновой природе микрочастиц немецкий физик Эльзассер предложил использовать кристаллы для наблюдения дифракции электронов (1925). В США К. Дэвиссон и Л. Джермер обнаружили явление дифракции при прохождении пучка электронов через пластинку из кристалла никеля (1927). Независимо от них дифракцию электронов при прохождении через металлическую фольгу открыли Дж. П. Томсон в Англии и П.С. Тартаковский в СССР. Так идея де Бройля о волновых свойствах вещества нашла экспериментальное подтверждение. Впоследствии дифракционные, а значит волновые, свойства были обнаружены у атомных и молекулярных пучков. Корпускулярно-волновыми свойствами обладают не только фотоны и электроны, но и все микрочастицы.

Октрытие волновых свойств у микрочастиц показало, что такие формы материи, как поле (непрерывное) и вещество (дискретное), которые с точки зрения классической физики, считались качественно отличающимися, в определенных условиях могут проявлять свойства, присущие и той и другой форме. Это говорит о единстве этих форм материи. Полное описание их свойств возможно только на основе противоположных, но дополняющих друг - друга представлений.

КЛАССИЧЕСКИЕ МОДЕЛИ АТОМА И ИХ НЕДОСТАТКИ.

Идеи о том, что атомы не являются неделимыми частицами и содержат в качестве составляющих

частиц элементарные заряды, были впервые высказаны в конце XIX в. Термин "электрон" предложил в 1881 г. английский физик Джордж Стоней. В 1897 г. электронная гипотеза получила экспериментальное подтверждение в исследованиях Эмиля Вихерта и Джозефа Джана Томсона . С этого момента началось создание разнообразных электронных моделей атомов и молекул. Первая модель Томсона предполагала, что положительный заряд равномерно рассредоточен по всему атому, а в него, подобно изюму в булочке, вкраплены электроны. Несоответствие этой модели экспериментальным данным стало ясно после проведения в 1906 г. опыта Эрнестом Резерфордом, который исследовал

процесс рассеяния а-частиц атомами. Из опыта был сделан вы вод, что положительный заряд сосредоточен внутри образования, существенно меньшего, чем размеры атома. Это образование назвали атомным ядром, размеры которого составляли 1 о- 12 см, а размеры атома- 1 о-в см.

В соответствии с классическими Представлениями электромагнетизма между каждым электроном и ядром должна действовать кулоновская сила притяжения. Зависимость этой силы от расстояния должна быть такой же, как и в законе всемирного тяготения. Следовательно, движение

электронов в атоме должно быть подоб но движению планет Солнечной системы. Так родилась планетарная модель атома Резерфорда. Дальнейшее исследование устойчивости атома дало ошеломляющий результат: расчеты показали, что за время 1 о-9 с электрон должен упасть на ядро

вследствие потери энергии на излучение. Кроме того, такая модель давала непрерывные, а не дискретные спектры излучения атомов.

ТЕОРИЯ АТОМА БОРА.

Следующий важный шаг в разработке теории атомов был сделан Нильсом Бором.

Важнейшей гипотезой, выдвинутой Бором в 1913 г., явилась гипотеза о дискретном строении

энергетических уровней электрона в атоме. Это положение проиллюстрировано на энергетических

диаграммах. Традиционно на энергетических диаграммах энергия откладывается по вертикальной

оси. Отличие движения тела в гравитационном поле от движения электрона в атоме в соответствии с гипотезой Бора состоит в том, что энергия тела может непрерывно изменяться, а энергия электрона при отрицательных значениях может принимать ряд дискретных значений, изображенных на рисунке отрезками голубого цвета. Эти дискретные значения были названы уровнями энергии или, иначе, энергетическими уровнями. Конечно же, идея дискретных уровней энергии была взята из гипотезы Планка. Изменение энергии электрона в соответствии с теорией Бора могло происходить только скачком (с одного уровня энергии на другой). Теория Бора прекрасно объясняла линейчатый характер

атомных спектров. Однако на вопрос о причине дискретности

уровней теория фактически не давала ответа.

ВОЛНЫ ВЕЩЕСТВА.

Следующий шаг в развитии теории микромира был сделан Луи де Бройлем. В 1924 г. он высказал предположение о том, что движение микрочастиц нужно описывать не как классическое механическое

движение, а как некоторое волновое движение. Именно из законов волнового движения должны быть получены рецепты вычисления различ ных наблюдаемых величин. Так в науке наряду с волнами электромагнитного поля появились волны вещества. Гипотеза о волновом характере движения частиц была такой же смелой, как и гипотеза Планка о дискретных свойствах поля. Эксперимент, прямо подтверждающий гипотезу де Бройля, был поставлен только в 1927 г. В этом эксперименте наблюдалась дифракция электронов на кристалле, подобно дифракции электромагнитной волны. Гипотеза о волнах вещества позволяла объяснить дискретную природу

энергетических уровней. Из теории волн было известно, что ограниченная в пространстве волна всегда имеет дискретные частоты. Примерам является волна в таком музыкальном инструменте, как флейта. Частота звучания в этом случае определяется размерами пространства, которыми ограничена волна (размерами флейты). Оказывается, что это общее свойство волн. Но в соответствии с гипотезой Планка частоты кванта электромагнитной волны пропорциональны энергии кванта. Следовательно, и энергия электрона должна принимать дискретные значения. Идея де Бройля оказалась очень плодотворной, хотя, как уже говорилось, прямой эксперимент, подтверждающий волновые свойства электрона , был проведен лишь в 1927 г. В 1926 г. Эрвин Шредингер вывел уравнение, которому должна подчиняться волна электрона, и, решив это уравнение применительно к атому водорода, получил все результаты, которые была способна дать теория Бора. Фактически это было началом современной теории, описывающей процессы в микромире, поскольку волновое уравнение легко обобщалось для самых разных систем - многоэлектронных атомов, молекул, кристаллов. Развитие теории привело к пониманию того, что волна, соответствующая частице, определяет вероятность нахождения частицы в данной точке пространства. Так в физику микромира вошло понятие вероятности. Согласно новой теории волна, соответствующая частице, полностью определяет движение частицы. Но общие свойства волн таковы, что волна не может быть локализована в какой-либо точке пространства, т.е. бессмысленно говорить о координатах частицы в данный момент времени. Следствием этого явилось полное исключение из физики микромира таких понятий, как траектория движения частицы и электронные орбиты в атоме. Красивая и наглядная планетарная модель атома, как оказалось,

Поделиться: